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All homogeneous sphere packings and all interpenetrating sphere packings

were derived that refer to the 6 invariant and the 11 univariant lattice complexes

belonging to the orthorhombic crystal system. In total, sphere packings of 38

types have been found. Only for 17 types is the maximal inherent symmetry of

their sphere packings orthorhombic. By means of a number of examples, the

applicability of sphere packings for the comparison and description of simple

crystal structures is demonstrated.

1. Introduction

In the past, homogeneous sphere packings with cubic (Fischer,

1973, 1974, 2004), tetragonal (Fischer, 1991a,b, 1993, 2005),

triclinic (Fischer & Koch, 2002) and hexagonal/trigonal (Sowa

et al., 2003; Sowa & Koch, 2004, 2005, 2006) symmetry have

been completely derived. Information on orthorhombic

sphere packings is limited, however. Niggli & Laves (1930)

studied ‘homogene systemsymmorphe Baugitter’, i.e. homo-

geneous sphere packings with site symmetry belonging to the

regarded crystal system. Within the orthorhombic system, this

means that the site symmetry of a sphere has to be mmm, 222

or mm2, which is the case for five of the six invariant and for

ten of the eleven univariant lattice complexes. More recently,

Sowa systematically derived sphere packings with symmetry

Cmcm 4c (Sowa, 2000a), Imma 4e (Sowa, 2000b), Cmcm 8f

(Sowa, 2001), Pnna 8e (Sowa & Koch, 2001) and Pnma 8d

(Sowa, 2005) in connection with the interpretation of recon-

structive phase transitions. Starting with the six invariant and

the eleven univariant lattice complexes, it is the aim of the

current series of publications to present all homogeneous

sphere packings with orthorhombic symmetry.

2. Definitions

An arrangement of spheres with the symmetry of a space

group is called a sphere packing if the following conditions

hold: (i) each sphere is in contact with at least one other

sphere; (ii) no spheres overlap; (iii) any two spheres are

connected by a chain of spheres with mutual contact.

A homogeneous sphere packing is a sphere packing where

all spheres are symmetrically equivalent, i.e. form an orbit of

spheres with respect to a space group. Otherwise the packing

is called heterogeneous.

Two (homogeneous) sphere packings belong to the same

sphere-packing type if the spheres of one sphere packing can

be mapped onto the spheres of the other one and vice versa

under preservation of all contact relationships between the

spheres (cf. e.g. Fischer, 1991a). Each type of sphere packing

can be designated by a symbol k/m/fn, as was first introduced

by Fischer (1971): k is the number of contacts per sphere, m is

the length of the shortest mesh within the sphere packing, f

indicates the highest crystal family for a sphere packing of that

type (c: cubic, h: hexagonal, t: tetragonal, o: orthorhombic)

and n is an arbitrary number.

The density � of a sphere packing is defined as the volume of

all spheres within one unit cell divided by the unit-cell volume.

Usually, the density is not constant for an entire type but

varies over a certain range. For most sphere-packing types, a

minimal density exists (Fischer, 2004, 2005; Koch et al., 2005;

Sowa & Koch, 2006).

3. Derivation of sphere packings

The derivation of the orthorhombic sphere packings closely

follows the procedure used before (cf. e.g. Sowa et al., 2003).

For any reference point that refers to the regarded lattice

complex and that belongs to the selected asymmetric unit of

the Euclidean normalizer of the space group under consid-

eration, all symmetrically equivalent points that might have

shortest distances to the first one are determined. The corre-

sponding (sets of) symmetry operations are listed. For all

combinations of these, it is checked whether they generate the

space group under consideration. Only if this is the case, the

set of spheres does not disintegrate into unconnected parts

and, therefore, forms a sphere packing. Then, the minimal

density �m is calculated by means of the program EUREKA:

THE SOLVER (1987). The value of �m together with those of

k and m facilitates the identification of the sphere-packing

type. One specific property of the orthorhombic crystal system
‡ Present address: GZG Abt. Kristallographie, Georg-August-Universität
Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany.



has to be noted: for space groups of 38 types, the Euclidean

normalizers differ from the affine normalizers (International

Tables for Crystallography, 2002, Vol. A, ch. 15; Koch &

Fischer, 2006). In these cases, the affine normalizers are

isomorphic either to tetragonal or to cubic space groups. As a

consequence, two or three lattice directions may be inter-

changed giving rise to a further reduction of the parameter

region that has to be investigated. Restricting the range either

of the lattice parameters or of the coordinate parameters may

do this. The possibility mentioned first has been preferred

because it is more convenient.

4. Results

The sphere packings corresponding to the six invariant and the

eleven univariant lattice complexes are presented in Tables 1

and 2, respectively.

In the first block, its characteristic Wyckoff position, the

respective site symmetry and the coordinate triplet of a

reference point identify each lattice complex. In the case of a

univariant lattice complex, the range of the coordinate par-

ameter that has to be investigated completes this information.

In cases where the range of lattice parameters can be

restricted, the corresponding inequalities are given. All space

groups are treated with origin choice 1.

In the second block, all possible neighbouring points, i.e. the

centres of all spheres that may have contact with the reference

sphere, are listed. For symmetry reasons, sets with two or more

equidistant neighbouring points may be formed, irrespective

of the choice of the free coordinate and metrical parameters.

Each such (set of) neighbouring point(s) is designated by a

capital letter.

The third block contains information on the types of sphere

packings. In the first column, 0.i, 1.i or 2.i designate a zero-, a

one- or a two-dimensional parameter range, respectively, i

being a serial number. The symbol k/m/fn characterizes the

sphere-packing type in the second column. The string of

capital letters in the next column symbolizes all neighbouring

points that give rise to sphere contacts. The last two columns

are related to those special sphere packings that show minimal

density: the corresponding values of x, y or z (in the case of a

univariant lattice complex) and of a/b and c/b are given in the

fourth column; the fifth column shows the value �m of the

minimal density.

5. Discussion

The orthorhombic invariant lattice complexes give rise to

sphere packings belonging to 12 types in total. For only one of

these types, i.e. 10/3/o3 in Fddd 8a, is the maximal inherent

symmetry of all respective sphere packings orthorhombic.

These sphere packings may be described as stackings of

triangular nets 36 with four nets per translation period and two

contacts each to spheres from the nets below and above [cf.

type 11 in Table 9.1.1.2 of International Tables for Crystal-

lography (1999), Vol. C; first mentioned by Hellner (1986)].

All other types encompass sphere packings with higher

symmetry as may be read from the letter c, h or t in their

symbols. In five cases, this enhanced symmetry is cubic, in one

case hexagonal, and in five cases tetragonal. This effect reflects

limiting-complex relationships due to a specialization of the

metrical parameters.1
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Table 1
The sphere packings corresponding to the six orthorhombic invariant
lattice complexes.

Pmmm 1a mmm 0, 0, 0 a �� b �� c

A 1, 0, 0 B 0, 1, 0 C 0, 0, 1

�1, 0, 0 0, �1, 0 0, 0, �1

0.1 6/4/c1 ABC 1, 1 0.52360

Cmmm 2a mmm 0, 0, 0 a �� b

A 1
2,

1
2, 0 B 1, 0, 0 C 0, 0, 1

�1
2,

1
2, 0 �1, 0, 0 0, 0, �1

1
2, �

1
2, 0

�1
2, �

1
2, 0

0.1 8/3/h4 ABC 1
3

p
3, 1

3

p
3 0.60460

1.1 6/4/c1 AC 1, 1
2

p
2 0.52360

Fmmm 4a mmm 0, 0, 0 a �� b �� c

A 1
2, 0, 1

2 B 1
2,

1
2, 0 D 0, 1

2,
1
2

�1
2, 0, 1

2 �1
2,

1
2, 0 0, �1

2,
1
2

1
2, 0, �1

2
1
2, �

1
2, 0 0, 1

2, �
1
2

�1
2, 0, �1

2 �1
2,�

1
2, 0 0, �1

2, �
1
2

C 1, 0, 0

�1, 0, 0

0.1 12/3/c1 ABD 1, 1 0.74048

0.2 10/3/t1 ABC 1
3

p
3, 1 0.69813

1.1 8/4/c1 AB 1
2

p
2, 1 0.68017

Fddd 8a 222 0, 0, 0 a �� b �� c

A 1
4,

1
4,

1
4 B 1

2,
1
2, 0 C 1, 0, 0

�1
4, �

1
4,

1
4 �1

2,
1
2, 0 �1, 0, 0

�1
4,

1
4, �

1
4

1
2, �

1
2, 0

1
4, �

1
4, �

1
4 �1

2, �
1
2, 0

0.1 10/3/o3 ABC 1
3

p
3, 2 0.69813

1.1 6/4/t2 AC 1
15

p
30, 1 0.55851

1.2 8/3/t1 AB 1,
p

6 0.60460

2.1 4/6/c1 A 1, 1 0.34009

Fddd 16c �11 1
8,

1
8,

1
8 a �� b �� c

A �1
8,

1
8, �

1
8 B 1

8, �
1
8, �

1
8 C 9

8,
1
8,

1
8

�1
8, �

1
8,

1
8

1
8,

3
8,

3
8 �7

8,
1
8,

1
8

3
8,

1
8,

3
8

3
8,

3
8,

1
8

0.1 6/3/c2 AB 1, 1 0.37024

0.2 6/4/t3 AC 1
15

p
l5, 1 0.55851

1.1 4/4/t1 A 1
2

p
2, 1 0.34009

Immm 2a mmm 0, 0, 0 a �� b �� c

A 1
2,

1
2,

1
2

1
2, �

1
2, �

1
2 B 0, 1, 0

�1
2,

1
2,

1
2 �1

2,
1
2, �

1
2 0, �1, 0

1
2, �

1
2,

1
2 �1

2, �
1
2,

1
2 C 1, 0, 0

1
2,

1
2, �

1
2 �1

2, �
1
2, �

1
2 �1, 0, 0

0.1 12/3/c1 ABC 1,
p

2 0.74048

1.1 10/3/t1 AC 1
3

p
6, 1 0.69813

2.1 8/4/cl A 1, 1 0.68017

1 Such relationships were not tabulated as ‘non-characteristic orbits’ by Engel
et al. (1984).
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Table 2
The sphere packings corresponding to the 11 orthorhombic univariant
lattice complexes.

Pmmm 2i 2mm x, 0, 0 0 < x �� 1
4; b �� c

A �x, 0, 0 C x, l, 0 D x, 0, 1

B 1�x, 0, 0 x, �l, 0 x, 0, �1

0.1 6/4/c1 ABCD 1
4; 2, 1 0.52360

Pmma 2e mm2 1
4, 0, z 0 �� z �� 1

4

A 3
4, 0, �z C 1

4, l, z E 5
4, 0, z

�1
4, 0, �z 1

4, �l, z �3
4, 0, z

B 3
4, 0, 1�z D 1

4, 0, 1+z

�1
4, 0, 1�z 1

4, 0, �l+z

0.1 8/3/h4 ABCD 1
4;
p

3, 1 0.60460

0.2 8/3/h4 ABCE 1
4; 1,
p

3 0.60460

1.1 6/4/c1 ACD 0; 2, 1 0.52360

1.2 6/4/c1 ABC 1
4;
p

2,
p

2 0.52360

Pmmn 2a mm2 0, 0, z 0 �� z �� 1
4; a �� b

A 1
2,

1
2, �z B 1

2,
1
2, l�z C l, 0, z

�1
2,

1
2, �z �1

2,
1
2, l�z �l, 0, z

1
2, �

1
2, �z 1

2, �
1
2, l�z D 0, l, z

�1
2, �

1
2, �z �1

2, �
1
2, 1�z 0, �1, z

E 0, 0, l+z

0, 0, �l+z

0.1 12/3/c1 ABCE 1
4;

1
2

p
2, 1

2

p
2 0.74048

0.2 12/3/c1 ABCD 1
4; 1,
p

2 0.74048

1.1 8/3/h4 ACE 0; 1
3

p
3, 1

3

p
3 0.60460

1.2 10/3/t1 ABE 1
4; 1, 1

3

p
6 0.69813

1.3 10/3/t1 ABC 1
4;

1
3

p
6, 1 0.69813

2.1 6/4/c1 AE 0; 1, 1
2

p
2 0.52360

2.2 8/4/c1 AB 1
4; 1, 1 0.68017

Cmcm 4c m2m 0, y, 1
4 0 �� y �� 1

4

A 0, �y, �1
4 D 1

2,
1
2�y, �1

4 F 1
2,

1
2+y, 1

4

0, �y, 3
4

1
2,

1
2�y, 3

4
1
2, �

1
2+y, 1

4

B 1, y, 1
4 �1

2,
1
2�y, �1

4 �1
2,

1
2+y, 1

4

�l, y, 1
4 �1

2,
1
2�y, 3

4 �1
2, �

1
2+y, 1

4

C 0, y, 5
4 E 0, 1�y, �1

4 G 0, 1+y, 1
4

0, y, �3
4 0, 1�y, 3

4 0, �1+y, 1
4

0.1 10/3/o2 ABCD 3
4�

1
4

p
6;
p

3�
p

2,
p

3�
p

2 0.66568

0.2 10/3/t1 ACDE 1
4; 1, 1

3

p
3 0.69813

0.3 12/3/h1 ABDF 1
6;

1
3

p
3, 2

3

p
2 0.74048

0.4 12/3/cl ADEF 1
4; 1, 1 0.74048

0.5 10/3/t1 AEFG 1
4;
p

3,
p

3 0.69813

1.1 8/3/o1 ABD 1
7;

1
7

p
7, 2

7

p
3 0.60460

1.2 8/3/h3 ACD 1
6;

1
3

p
3, 2

9

p
3 0.53742

1.3 8/4/c1 ADE 1
4; 1, 1

2

p
2 0.68017

1.4 8/3/h4 ABF 0; 1
3

p
3, 2

3

p
3 0.60460

1.5 10/3/t1 BDF 1
4;

1
3

p
3, 1 0.69813

1.6 10/3/o1 ADF 1
5;

1
5

p
15, 2

5

p
6 0.69813

1.7 8/4/c1 AEF 1
4;
p

2,
p

2 0.68017

1.8 8/3/h4 AFG 0;
p

3, 2 0.60460

2.1 6/4/h2 AD 1
6;

1
3

p
3, 1

3

p
2 0.52360

2.2 6/4/c1 AF 0; 1,
p

2 0.52360

2.3 8/4/c1 DF 1
4;

1
2

p
2, 1 0.68017

Cmmm 4g 2mm x, 0, 0 0 < x �� 1
4

A �x, 0, 0 C 1�x, 0, 0 E x, 1, 0

B 1
2�x, 1

2, 0 D x, 0, 1 x, �1, 0
1
2�x, �1

2, 0 x, 0, �1

0.1 6/4/c1 ABCD 1
4; 1, 1

2 0.52360

0.2 7/3/o1 ABDE 1� 1
2

p
3; 2+
p

3, 1 0.56119

1.1 5/4/h5 ABD 1
6;
p

3, 1
3

p
3 0.40307

Cmmm 4k mm2 0, 0, z 0 < z �� 1
4; a �� b

A 1
2,

1
2, z B 1, 0, z C 0, 0, �z

�1
2,

1
2, z �1, 0, z D 0, 0, l�z

1
2, �

1
2, z

�1
2, �

1
2, z

0.1 8/3/h4 ABCD 1
4;

1
3

p
3, 2

3

p
3 0.60460

1.1 6/4/c1 ACD 1
4; l,
p

2 0.52360

Cmme 4g mm2 0, 1
4, z 0 �� z �� 1

4; a �� b

A 1
2,

1
4, �z D 1

2,
1
4, l�z G 1

2,
3
4, z

�1
2,

1
4, �z �1

2,
1
4, l�z �1

2,
3
4, z

B 0, 3
4, �z E 0, 3

4, l�z 1
2, �

1
4, z

0, �1
4, �z 0, �1

4, l�z �1
2, �

1
4, z

C 0, 1
4, l+z F l, 1

4, z

0, 1
4, �1+z �1, 1

4, z

0.1 10/3/t1 ABCDE 1
4; 1, 1

3

p
3 0.69813

0.2 12/3/c1 ABDEG 1
4; 1, 1 0.74048

0.3 10/3/t1 ADFG 1
4;

1
3

p
3, 1 0.69813

1.1 6/4/c1 ABC 0; 1, 1
2 0.52360

1.2 8/4/c1 ABDE 1
4; 1, 1

2

p
2 0.68017

1.3 8/4/c1 ADG 1
4;

1
2

p
2, 1 0.68017

Fmmm 8g 2mm x, 0, 0 0 < x �� 1
4; b �� c

A 1
2�x, 1

2, 0 C �x, 0, 0 F x, 1
2,

1
2

1
2�x, �1

2, 0 D 1�x, 0, 0 x, 1
2, �

1
2

B 1
2�x, 0, 1

2 E x, 1, 0 x, �1
2,

1
2

1
2�x, 0, �1

2 x, �1, 0 x, �1
2, �

1
2

0.1 6/4/c1 ABCD 1
4; 1, 1 0.52360

0.2 9/3/t2 ABCF 1
2�

1
4

p
2; 1+
p

2, 1 0.61343

0.3 9/3/o1 ACEF 1�1
2

p
3; 2+
p

3,
p

3 0.64801

1.1 5/4/t6 ABC 3
16;
p

2, 1 0.44179

1.2 7/4/o1 ACF 1
24(7�

p
l3);

(4+
p

l3)1/2, 1
6(30+6

p
l3)1/2

0.60210

Fddd 16e 2.. x, 0, 0 0 < x �� 1
4; b �� c

A 1
4�x, 1

4,
1
4 D �x, 0, 0 H 1

2�x, 0, 1
2

1
4�x, �1

4, �
1
4 E 1�x, 0, 0 1

2�x, 0, � 1
2

B �1
4+x, 1

4, �
1
4 F x, 1

2,
1
2 I x, 1, 0

�1
4+x, �1

4,
1
4 x, 1

2, �
1
2 x, �l, 0

1
4+x, 1

4,
1
4 x, �1

2,
1
2

1
4+x, �1

4, �
1
4 x, �1

2, �
1
2

C 3
4�x, 1

4, �
1
4 G 1

2�x, 1
2, 0

3
4�x, �1

4,
1
4

1
2�x, �1

2, 0

0.1 12/3/c1 ABCDEG 1
4; 1,
p

2 0.74048

0.2 12/3/c1 ABCGH 1
4;
p

2, 1 0.74048

0.3 10/3/t3 AFGH 1
2�

1
8

p
6; 2+
p

6, 1 0.66568

0.4 9/3/o2 ADFI 1
2�

1
4

p
3; 4+2

p
3,
p

3 0.64801

0.5 7/3/o6 ADGI 1�1
2

p
3; 2+
p

3,
p

2+
p

6 0.58099

0.6 10/3/o4 AFGI 3
16; 4
p

3,
p

3 0.69813

1.1 10/3/t1 ABCDE 1
4;

1
3

p
6, 1 0.69813

1.2 10/3/t1 ABCG 1
4;

1
2

p
6, 1

2

p
6 0.69813

1.3 6/4/t10 AGH 0.20505; 2.66891, 1 0.53543

1.4 7/3/t22 ADF 1
2�

1
4

p
3; 2
p

2+
p

6, 1 0.56119

1.5 5/4/o4 ADG 5
32; 2,
p

5 0.45734

1.6 5/4/o5 ADI 3�1
2

p
34; 3+1

2

p
34,

(11
2 +
p

34)1/2

0.42072

1.7 8/3/o3 AFG 0.19110; 5.14860, 1.21292 0.65142

1.8 6/3/o4 AGI 1�1
4

p
11; 3

2

p
3+1

2

p
33,

1
2(24+6

p
11)1/2

0.46228

2.1 8/4/c1 ABC 1
4; 1, 1 0.68017

2.2 3/10/t4 AD 3
32; 2, 1 0.22089

2.3 4/6/o1 AG 0.17995; 3.06796, 2.03407 0.38484

Table 2 (continued)



The orthorhombic univariant lattice complexes yield sphere

packings of 34 different types in total. For 16 of them, the

maximal symmetry of a sphere packing is orthorhombic, for 4

cubic, for 5 hexagonal and for 9 tetragonal. Some of the types

occur more than once; the most frequent type 6/4/c1 was found

11 times. It corresponds to the cubic primitive lattice. Owing to

limiting-complex relationships, 8 of the 12 sphere-packing

types referring to the orthorhombic invariant lattice

complexes occur again in univariant lattice complexes. The

sphere packings of types 10/3/ol, 10/3/o2 (both in Cmcm 4c)

and 10/3/o4 (Fddd 16e) have been tabulated before as types

13, 17 and 12, respectively, in Table 9.1.1.2 of International

Tables for Crystallography (1999), Vol. C. 10/3/o1 and 10/3/o2

were first derived by Wells & Chamberland (1987), 10/3/o4 by

O’Keeffe (1998). Sphere packings of types 10/3/o1 and 10/3/o2

may be described as stacking of square nets 44 with two and

four nets per translation period, respectively. In 10/3/o1, each

sphere has three contacts to spheres from both neighbouring

nets, whereas in 10/3/o2 (cf. Fig. 1) each sphere shows four

contacts to one net and two to the other net. Similarly to

10/3/o3, a sphere packing of type 10/3/o4 may be looked at as

stacking of triangular nets 36 with two contacts per sphere to

both neighbouring nets, but with eight nets per translation

period. Triangular nets with two contacts per sphere to the first

and one contact to the second neighbouring net give rise to

sphere packings of types 9/3/o1 (Fmmm 8g) and 9/3/o2 (Fddd

16e). Sphere packings of types 8/3/o3 (Fddd 16e), 7/3/o1

(Cmmm 4g, cf. Coutanceau Clarke, 1972) and 7/4/o1 (Fmmm

research papers
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Figure 1
Sphere packing of type 10/3/o2 (Cmcm 4c): stacking of square nets 44 with
four nets per translation period. Each sphere has four contacts to one
neighbouring net and two contacts to the other net. The vertices of one
trigonal prismatic void are emphasized in red.

Figure 2
Sphere packing of type 5/4/o4 (Fddd 16e) with minimal density: stacking
of flat honeycomb nets 63 with four nets per translation period. Each
sphere has contacts to one sphere from each neighbouring net. The
vertices of one void with 6 + 4 neighbours are emphasized in red, those of
one distorted tetrahedral void are marked in green.

Figure 3
Sphere packing of type 8/3/o1 (Cmcm 4c) that cannot be subdivided into
flat nets of spheres with mutual contact. The vertices of one seven-
coordinated void are marked in red.

Immm 4e 2mm x, 0, 0 0 < x �� 1
4; b �� c

A 1
2�x, 1

2,
1
2 B �x, 0, 0 E x, 0, 1

1
2�x, 1

2, �
1
2 C 1�x, 0, 0 x, 0, �1

1
2�x, �1

2,
1
2 D x, 1, 0

1
2�x, �1

2, �
1
2 x, �1, 0

0.1 8/3/h4 ABCD 1
4; 2,
p

3 0.60460

0.2 9/3/t2 ABDE 1
2�

1
4

p
2; 3+
p

2, 1 0.61343

1.1 6/4/c1 ABC 1
4;
p

2, 1 0.52360

1.2 7/3/o5 ABD 1
2(3�
p

7); 2
p

2, (1+1
2

p
7)1/2 0.48680

2.1 5/4/t6 AB 3
16; 2, 1 0.44179

Imma 4e mm2 0, 1
4, z 0 �� z �� 1

8; a �� b

A 1, 1
4, z C 0, 1

4, l+z E 0, �1
4, �z

�1, 1
4, z 0, 1

4, �l+z 0, 3
4, �z

B 1
2,

1
4,

1
2�z D 1

2,
1
4, �

1
2�z F 0, 5

4, z

�1
2,

1
4,

1
2�z �1

2,
1
4, �

1
2�z 0, �3

4, z

0.1 8/3/h4 BCDE 0; 1
2

p
3, 1

2 0.60460

0.2 8/3/h4 ABDE 0; 1
2,

1
2

p
3 0.60460

0.3 8/3/t1 ABEF 1
8; l, 2
p

3 0.60460

1.1 6/4/c1 BDE 0; 1
2

p
2, 1

2

p
2 0.52360

1.2 6/4/t2 BCE 1
8; 1, 2

15

p
15 0.55851

1.3 6/3/o1 ABE 1
8(11�

p
l05); 1

4(26�2
p

l05)1/2,
1
4(22+2

p
l05)1/2

0.44226

2.1 4/6/c1 BE 1
8; 1,
p

2 0.34009

Table 2 (continued)



8g, cf. Wells & Chamberland, 1987) consist of square nets. In

the first case, the spheres have two contacts to each of the

neighbouring nets; in the other cases, the numbers of contacts

to spheres from neighbouring nets are two and one. Sphere

packings of type 7/3/o6 (Fddd 16e) can be subdivided into flat

nets of triangles and squares 3342, those of type 5/4/o4 (Fddd

16e, cf. Fig. 2) into flat honeycomb nets 63. The packings of the

other six types cannot be subdivided into a flat arrangement of

spheres with mutual contact (cf. e.g. Fig. 3).

The results presented here were derived without making

use of the earlier results by Niggli & Laves (1930). A subse-

quent comparison shows a large amount of consistency and a

few differences: Niggli & Laves did not study the invariant

lattice complex Fddd 16c and the univariant lattice complex

Fddd 16e because of their non-orthorhombic site symmetry;

for unknown reasons, they skipped in addition the univariant

lattice complexes Pmmm 2i and Cmmm 4k; their results for

the lattice complex Cmcm 4c are incomplete: 12/3/h1 (h.c.p.),

8/3/h3 and 6/4/h2 are missing.

6. Examples of crystal structures

Atomic arrangements within inorganic crystal structures may

frequently be interpreted as sphere packings. In such a case,

the shortest distances between the atoms have to be

(approximately) equal. This does not mean, however, that the

corresponding atoms are spheres with mutual contact. Some

examples will illustrate this. Following Koch & Sowa (2004),

the standard deviation s of the normalized distances that

correspond to sphere contacts is used as a measure for the

agreement between the atomic arrangement and the ideal

sphere packing:

s ¼
1

k

Xk

j¼1

dj

d
� 1

� �2
" #1=2

¼
1

k

Pk
j¼1 d2

j

d2
� 1

 !1=2

; ð1Þ

where k is the number of sphere-packing neighbours, dj is the

distance of the jth neighbour from the reference atom and d is

the mean value of the k distances.

In the following, some orthorhombic crystal structures are

given in which the arrangement of some kinds of atom

resembles a sphere packing. In all cases, the regarded atomic

position corresponds to an invariant or univariant ortho-

rhombic lattice complex. The examples are arbitrarily chosen

and the authors do not lay claim to completeness.

(i) A sphere packing of type 5/4/o4 with symmetry Fddd 16e

and minimal density (cf. Fig. 2) contains two kinds of voids.

The centres of the large voids with 6 + 4 neighbours form a

distorted diamond packing (4/6/c1, cf. Table 1), those of the

small four-coordinated voids a sphere packing of type 3/10/t4

(cf. Table 2). In the crystal structure of TiSi2 (Tanaka et al.,

2001), the arrangement of the Si atoms is closely related to a

sphere packing of type 5/4/o4 (s = 0.045), with the Ti atoms

occupying the large ten-coordinated voids therein. The B

configurations in CeIr2B2 (cf. Jung, 1991; s = 0.015) as well as

in LiIrB (cf. Klünter et al., 1994; s = 0.022) also form sphere

packings of that type to a good approximation. In both

structures, the Ir atoms are located in the small distorted

tetrahedral voids. The large ten-coordinated voids contain the

Ce atoms, whereas the Li atoms have an almost square

surrounding and form a sphere packing of type 4/4/t1 (cf.

Table 1).

(ii) The Cl ions in the crystal structure of the high-pressure

modification of silver chloride AgCl-III with symmetry Cmcm

(Hull & Keen, 1999) correspond to a sphere packing of type

8/3/o1 (cf. Fig. 3 and Table 2) in good approximation (s = 0.01).

The cations are located in channels parallel to a and are

coordinated by seven anions each.

(iii) The Cr arrangement in the crystal structure of CrB with

symmetry Cmcm (Okada et al., 1987) resembles a sphere

packing of type 10/3/o2 (s = 0.049) with the B atoms in the

trigonal prismatic voids (cf. Fig. 1 and Table 2).

(iv) In the average structure of the low-temperature phase

obtained from �-PbO (Cmma, cf. Boher et al., 1985), the Pb

atoms form a distorted cubic closest packing 12/3/c1 (cf. Table

2) that is compressed in the direction of c (s = 0.033). The O

atoms occupy layers of tetrahedral voids perpendicular to c.

(v) ReSi2 (cf. Siegrist et al., 1983) crystallizes with symmetry

Immm. The Si arrangement corresponds well (s = 0.021) to a

sphere packing of the tetragonal type 5/4/t6 (cf. Table 2) with

large ten-coordinated and small tetrahedral voids. The Re

atoms are surrounded by ten Si atoms forming cubes with two

opposite faces capped.

(vi) The Se atoms in the crystal structure of KCu2Se2 (cf.

Tiedje et al., 2003) with symmetry Fmmm correspond in good

approximation (s = 0.014) to a tetragonal sphere packing of

type 9/3/t2 (cf. Table 2). Within the Se configuration, layers

perpendicular to c containing K atoms in cubic voids alternate

with layers consisting of tetrahedrally coordinated Cu atoms

and empty tetragonal pyramids.

(vii) The arrangement of the Pu atoms in the high-

temperature phase �-Pu (Zachariasen & Ellinger, 1955)

corresponds to a slightly distorted sphere packing of type

10/3/o3 (cf. O’Keeffe, 1998).
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